Digital IO PAD Overview and Calibration Scheme

HyunJin Kim

School of Electronics and Electrical Engineering
Dankook University
Contents

1. Introduction
2. IO Structure
3. ZQ Calibration Scheme
4. Conclusion
• IO circuits
 • In each pad, several i/o circuits are implemented.
 • In implementation, digital signals are connected in the inner side of pad.
IO circuits
• PADs require many kinds of power and signal rings.
 • Ex) calibration signals required to control unit driving strength.
 • Special PAD is required to generate control signals.

[Diagram showing IO circuits with layers for calibration n1, calibration n2, calibration n3, VREF, VDD, VSS, bonding area, VDDQ, VSSQ]
Introduction—IO Structure

- Circuits in I/O pad
 - ESD (Electrostatic discharge) diode
 - ESD (Electrostatic discharge) resister
 - Output driver
 - Input receiver
 - Level shifters for digital signals
Introduction—ZQ Calibration

• Requirement for high speed IO circuits
 • Impedance matching should be kept.
 • PVT (Process, Voltage, Temperature) variation can be critical.

• Reliable output driver
 • Driving strength should be maintained regardless of PVT variation.
 • Especially, voltage and temperature variations are more critical.
 • Good process can guarantee reasonable variation.
 • For mobile application, on-diet termination should be avoided due to high power consumption.
 • ZQ calibration is more valuable.
ZQ calibration

- Practically, standards of DDR3 and DDR4 DRAM should support ZQ calibration.
- Compared to ZQ resistor (RZQ = 240 Ohm), the strength of unit driver is calibrated.
- By dividing the impedance of unit driver, Ron is also calibrated.

Variation should be reduced!!
IO Structure
IO Structure

• IO modes:
 • Slew rate control
 • Driving strength for p and n drivers
 • Unit driver strength calibration for p and n drivers
 • Receiver reference voltage
 • Schmitt trigger
 • On die termination
 • Functions for turning on/off drivers/receivers
IO Structure

• Slew rate control
 • Slew rate: maximum voltage change per unit time.
 • Strong pre-driver charges or discharges the gate of driver fast.
 • Large slew rate → Large eye
 • However, the problem of overshoot and undershoot can happen.
IO Structure

• Slew rate control
 • A pad has driver and pre-driver.

• Slew rate control is related to pre-driver.

![Diagram](image)

- strong pre-driver
- weak pre-driver
- driver
- PAD
IO Structure

- Slew rate control
 - What is the good slew rate control?
 - The overshoot and undershoot specification should be met.
 - Large slew rate increases eye, but harms power integrity.
 - Considering various cases, different slew rate control modes are implemented in drivers.
 - Ex) #pads for a driver can be different according to implementation.
 - Different capacitance and inductance can be given.
IO Structure

- Driving strength for p and n drivers
 - Like slew rate, driving strength can be another factor for affecting overshoot and undershoot.
 - Depending on the capacitance of pads, driving strength can be adjusted.

![IO Structure Diagram]

- From pre-driver to PAD
 - p-driver
 - n-driver
- VDD
- VCC
IO Structure

• Driving strength for p and n drivers
 • Multiple unit drivers are adopted for controlling driving strength.

• Due to area cost, #options is limited.

 strength control

 → Unit-driver x n
 → Unit-driver x 1
 → Unit-driver x 2
 → Unit-driver x 4
IO Structure

• Unit driver strength calibration for p and n drivers
 • Each unit driver can have small p–drivers and n–drivers to calibrate unit driver strength.
IO Structure

• Unit driver strength calibration for p and n drivers
 • Duty ratio is related to the unit driver strength calibration.

• Unit driver with strength calibration should have separate pre-driving inverters for p-driver and n-driver.

• All pads can share the same unit driver strength calibration codes.
 • Using metal rings, the signal can be supplied to each unit drivers.
IO Structure

- Receiver reference voltage
 - For differential I/O, voltage reference is not required.
 - However, two pads are required.
 - Critical for pad limit IC implementation!!

- Pseudo differential IO (ex. SSTL) can be common.
 - SSTL: Stub Series Terminated Logic

Figure 2: Alternative Termination for SSTL
IO Structure

- Receiver reference voltage
 - A comparator is adopted for pseudo differential receiver.
 - Reference voltage is generated in the host side.
 - Voltage divider is common solution.

Figure 2: Alternative Termination for SSTL
IO Structure

- Receiver reference voltage
 - Sometimes, internal reference voltage generator should be adopted.

- The integrity of the generated reference voltage is key.
 - Special care is required in IC implementation.

- Reference voltage level can be calibrated for fining maximum eye.
 - For compensating receiver input high/low voltage level.
 - Controlled reference voltage levels are required!!
IO Structure

- **Schmitt Trigger**
 - Schmitt trigger suppresses input noise with threshold voltage.
 - However, receiver input delay can increase with Schmitt trigger.
IO Structure

• Schmitt Trigger
 • Nowadays, basic idea of SSTL IO does not adopt Schmitt trigger on/off option.

 • For CMOS receiver, Schmitt trigger is common. However, CMOS receiver has large input delay, compared to differential receiver.

 • However, small hysteresis is required in the receiver of SSTL IO.
IO Structure

• **On Die Termination**
 - For signal integrity, on die termination (ODT) is common for external RAM.
 - For internal RAM, ODT is avoided due to high power consumption.
 - Resistors are implemented for the impedance matching.
IO Structure

• On Die Termination
 • The serial resistors consumes large currents in receiver sides.
 • For minimizing IO energy consumption, ODT should be avoided.
 • Instead, other skills for enhancing signal integrity are required.

출처: www.rambus.com
IO Structure

- Functions for turning on/off drivers/receivers
 - Current consumption can be proportional to the number of pads.
 - For differential receiver, comparator should be turned off for idle or power saving mode.
 - Slow CMOS receiver is adopted for power saving mode.
IO Structure

• Functions for turning on/off drivers/receivers
 • Leakage current in PAD can be possible.
 • To enhance yield in field of energy limitation, unused drivers can be turned off for reducing leakage current through pads.
ZQ Calibration Scheme
• Driving strength of IO drivers (Ref: Miron TN–41–02)

Parallel unit drivers

Parallel unit drivers

Unit Driver
Turn on/off for scaling impedance
ZQ Calibration Scheme

• For supporting ZQ calibration in IO drivers
 • 240 ohm homogeneous unit drivers should be programmable.
 • By parallelizing unit drivers, target impedance can be obtained.

• For supporting ZQ calibration in device (ex, DDR3)
 • ZQ calibration commands are equipped.
 • Ex) Micron DDR3

Table 1: ZQ Command Truth Table

<table>
<thead>
<tr>
<th>Function</th>
<th>Abbreviation</th>
<th>CKE</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Previous Cycle</td>
<td>Next Cycle</td>
<td>CS#</td>
<td>CAS#</td>
<td>RAS#</td>
<td>WE#</td>
<td>BA0-BA3</td>
<td>A13-A15</td>
<td>A12</td>
<td>A10</td>
</tr>
<tr>
<td>ZQ CALIBRATION LONG</td>
<td>ZQCL</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>ZQ CALIBRATION SHORT</td>
<td>ZQCS</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
</tr>
</tbody>
</table>
ZQ Calibration Scheme

- **ZQ calibration command**
 - **ZQ calibration long**
 - Used for full calibration at initial system power up when device is in a reset condition.

- **ZQ calibration short**
 - Tracks the continuous voltage and temperature change.

- **Data bus when ZQ calibration command is issued**
 - Memory data bus remains completely idle and quiet.
 - To suppress the noise for calculating ZQ calibration
 - Long idle time
 - 256 cycles for ZQCL
 - 64 cycles for ZQCS
ZQ Calibration Scheme

- ZQ calibration timing

Idle memory data bus
ZQ Calibration Scheme

ZQ calibration controller

- Obtained code
- Programmable code
- Comparator
 - Vref_p
 - Vref_n

p-unit driver

External Resistor (240ohm)

n-unit driver
ZQ Calibration Scheme

- **External resistor**
 - 240 ohm external resistor for calibrating unit driver
 - Used for obtaining code for p-unit driver

- **ZQ calibration controller**
 - Full digital block for controlling unit drivers
 - According to programmable transistors in a unit driver, the width of calibration code is determined.
 - Digital noise can be harmful for comparator
 - Suitable noise blocking is required.
ZQ Calibration Scheme

- **Steps for obtaining code**
 - **Step 1**
 - Decrease impedance of p-unit driver using programmable code
 - When output of comparator is changed to high, the programmable code is determined for p-unit driver.
 - **Step 2**
 - Apply the p-unit driver code
 - Increasing impedance of n-unit driver using programmable code
 - When output of comparator is changed to high, the programmable code is determined for n-unit driver.
 - **Step 3**
 - The obtained code is outputted for IO drivers.
Example of obtaining code

Below example, code = 4 is the first value of high.

By increasing code step by step, code = 4 can be the first value.

<table>
<thead>
<tr>
<th>Comparator output</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>code = 7</td>
</tr>
<tr>
<td>High</td>
<td>code = 6</td>
</tr>
<tr>
<td>High</td>
<td>code = 5</td>
</tr>
<tr>
<td>High</td>
<td>code = 4</td>
</tr>
<tr>
<td>Low</td>
<td>code = 3</td>
</tr>
<tr>
<td>Low</td>
<td>code = 2</td>
</tr>
<tr>
<td>Low</td>
<td>code = 1</td>
</tr>
<tr>
<td>Low</td>
<td>code = 0</td>
</tr>
</tbody>
</table>

code: 0 → 1 → 2 → 3 → 4 (obtained code: 4)
ZQ Calibration Scheme

- Short calibration time
 - Instead of changing impedance step by step, binary code can be adopted.
 - Binary code can be generated from ZQ calibration controller.
 - After Starting from center value, then, finishing for first value of high.

<table>
<thead>
<tr>
<th>comparator output</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>code = 7</td>
</tr>
<tr>
<td>High</td>
<td>code = 6</td>
</tr>
<tr>
<td>High</td>
<td>code = 5</td>
</tr>
<tr>
<td>High</td>
<td>code = 4</td>
</tr>
<tr>
<td>Low</td>
<td>code = 3</td>
</tr>
<tr>
<td>Low</td>
<td>code = 2</td>
</tr>
<tr>
<td>Low</td>
<td>code = 1</td>
</tr>
<tr>
<td>Low</td>
<td>code = 0</td>
</tr>
</tbody>
</table>

code: 4 \rightarrow 3 \text{(obtained code: 4)}
ZQ Calibration Scheme

• Need for short calibration time
 • Unlike process and temperature variation, voltage drift can happen in a short time.

• Another way to suppress voltage drift
 • Large on-chip capacitor (100pF~) can be effective.
 • Due to the small impedance of unit driver (about 240 ohm), on-chip capacitor should be limited.
 • Off-chip capacitor
 • Small MLCC can be attached close to the power source.
 • Sometime, due to the size limitation (ex Flash memory card), off-chip capacitor can be impossible.
ZQ Calibration Scheme

- **Cause of error (ex. < 10 % DDR3 RAM)**
 - ZQ external resistor: 1%
 - Difference between programmable codes
 - Ex) 250 ohm for code = 4, 230 ohm for code = 5 → 20 ohm difference in unit driver. In this case, 8.3% error can be caused.

- **Impedance in path towards ball**
 - Impedance exists in path towards ball
 - Due to the variation of path length, error can happen.
 - In MCP (multi-chip package), paths between PAD and ball can be different.
• **Minimization of Error**
 - ZQ external resistor: cannot be avoided (according to spec)

• Impedance in path towards ball
 - Impedance in the path should be estimated in advance.
 - The estimated impedance in the path should be considered for obtaining calibration code.
ZQ Calibration Scheme

• Minimization of Error
 • Difference between programmable codes
 • The size of calibration code and programmability of unit driver can be increased.
 • 3-bit unit driver → 8 different values
 • 10-bit unit driver → 1,000 different values
 • When increasing programmability, hardware overhead in IO circuit also increases.
 • Suitable size and programmability should be considered.
 • Regularity in programmable code is also important!
 • IO design should consider the regularity of programmable values.
 • Ex) 250 ohm for code = 4, 230 ohm for code = 5 → 20 ohm difference in unit driver.
 • Ex) 290 ohm for code = 2, 260 ohm for code = 3 → 30 ohm difference in unit driver.
ZQ Calibration Scheme

• Test of ZQ calibration block
 • Test mode for ZQ calibration should be provided.

 • External analog test point can be adopted.
 • Ball for external ZQ resistor can be a good test point.

• Considering PVT variation, characteristics of IO driver should be proved.
 • Before mass production, characteristics of IO driver should be proved with large samples. (1,000EA~)
 • Unlike old DC test, test of ZQ calibration block can be performed with various environments.
ZQ Calibration Scheme

• EDS vs. Package
 • Impedance in path towards ball and ZQ resistor should be considered.
 • In EDS, the characteristics mentioned before cannot be considered.
 • In real, the evaluation of signal integrity can be performed in board level.
 • Driving strength from ZQ calibration should be considered.
Conclusion

• Why is the understanding of IO structure important?
 • A lot of circuits are contained in IO pads.

• What is ZQ calibration?
 • IO driving strength is maintained regardless of PVT variation.

• Practical design in ZQ calibration
 • For short calibration time, binary search can be adopted.
 • Voltage drift can be more critical than process and temperature variations.
Digital IO PAD Overview and Calibration Scheme

HyunJin Kim

School of Electronics and Electrical Engineering
Dankook University